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ABSTRACT
A large number of real-world scientific applications can be char-
acterized as loosely coupled: the communication among tasks is
infrequent and can be performed by using file operations. While
these applications may be ported to large scale machines designed
for tightly coupled, massively parallel jobs, direct implementations
do not perform well because of the large number of small, latency-
bound file accesses. This problem may be overcome through the
use of a variety of custom, hand-coded strategies applied atvarious
subsystems of modern near-petascale computers- but is a labor in-
tensive process that will become increasingly difficult at the petas-
cale and beyond. This work profiles the essential operationsin the
I/O workload for five loosely coupled scientific applications. We
characterize the I/O workload induced by these applications and
offer an analysis to motivate and aid the development of program-
ming tools, I/O subsystems, and filesystems.

1. INTRODUCTION
Many modern scientific applications are structured as largear-

rangements of software units glued together by scripting languages
such as Perl, Python, Tcl, or shell scripts [20]. This framework
allows developers to quickly combine multiple tools together. For
example, a simple case might involve performing a computation
on a high-performance cluster, gathering the output and passing it
through a plotting package for data visualization. More complex
constructions perform metacomputations, such as selecting input
parameters for future computations or obtaining resources. Script-
ing has become a prevalent model for scientific application devel-
opment but faces particular challenges posed by the I/O mecha-
nisms and filesystems on petascale computers. In this paper,we
provide a coarse characterization of the I/O workload produced by
five applications built on the Swift language [31].

A feature of software produced with scripting toolkits is that it
is highly portable, promoting code reuse and providing flexibility
of choice for resources. The portability strengths of scripting have
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brought it to the recently available near-petascale and petascale ma-
chines. Scripting languages typically provide an interprocess com-
munication (IPC) mechanism for communication less complex[16]
than provided by MPI [11]. While such scripted programs can
achieve the massive parallelism available on these machines, porta-
bility comes by performing IPC through the filesystem. The filesys-
tem thus becomes a bottleneck. For example, the 160,000-core
BlueGene/P at Argonne National Laboratory offers a GPFS [24]
filesystem with total bandwidth of 65 GB/s, yet only 400 KB/s is
available per core [21], and a file creation rate within a single di-
rectory of 40/s gives about 1/hour per core [22]. Clearly, a simple
application consisting of many small accesses to the file system
would not be efficient, yet due to the complexity of the applica-
tions, it is not immediately obvious how to improve the situation in
the general case.

We propose that aggregating case studies will help formulate
Collective Data Management (CDM) strategies that can be pro-
vided to users through scripting language constructs and systems
software. First, the set of primitive characteristics mustbe deter-
mined. This involves capturing essential filesystem operations and
use cases that impact performance, such as number of file and di-
rectory creations and accesses, file size, the balance of read and
write operations on files, the size of those accesses, the sequen-
tiality of those accesses, and the long-term disk usage patterns for
resulting output data. Next, a set of potential optimizations may be
captured and categorized. These steps involve acareful look at real
applications, performed herein. Future work will involve the con-
struction of language-level solutions to the data management chal-
lenges in scripted applications. The output of this work could also
improve filesystems themselves by providing new features such as
performance optimizations for the small access patterns described
here.

I/O has long been identified as a component of the petascale chal-
lenge [10]. Many advances have been made in the development of
parallel I/O [7] for tightly coupled applications, but the study of I/O
performed by large batches of small independent tasks is relatively
new. We describe the I/O patterns of five applications that can con-
sume the computing power of petascale machines. Our objective is
to characterize important application features that can improve the
development of scripting tools, I/O systems, and filesystems.

The remainder of this work is organized as follows. In the next
section, we provide background on loosely coupled applications
and describe relevant I/O and storage technologies. In Section 3,
we describe the applications studied here in detail and extract their
performance-critical data access operations. Section 4 contains our
analysis of the application characteristics, and we conclude in Sec-
tion 5 with a brief summary.



2. RELATED WORK
Scientific applications that are composed of large numbers of

tasks coupled by filesystem operations have been well studied [26].
Such workflows have proven to be portable [12], running on oppor-
tunistic systems [28] such as desktop grids, and scaling up to large
production systems such as the TeraGrid [5]. Parallel scripting has
been brought to large-scale job submission systems throughthe
Swift language [31], and the use of massively parallel machines has
been aided by the efficiency brought by the Falkon scheduler [23].

Once a user has issued hundreds of thousands of tasks commu-
nicating through the filesystem, one must consider the effect of
the large number of small, latency-bound filesystem operations in-
volved, or the rereading of the same data sets by large numbers of
apparently independent processes. Collective I/O operations were
proposed [30] to aggregate many relatively small reads and writes
into larger operations. This method relies on an intermediate cache
to perform aggregation. BAD-FS [3] and data diffusion [21] use
data-aware scheduling and caching on large scale production sys-
tems to increase data locality.

Enhanced filesystem features have been proposed to address the
problem at file server component or filesystem client component.
Small file and metadata operations were improved in the Chirpfile
system [27] by hybridizing the protocol between RPC and stream-
ing techniques, as well as adding new, nontraditional filesystem
calls for commonly performed operations. Similarly, smallfile and
metadata operations were improved for the Parallel VirtualFilesys-
tem (PVFS) [4] by precreating data objects for files, utilizing lo-
cality for small file data and metadata, and using eager messages
for small data movement. New technologies such as object storage
devices may be tapped to improve the performance of directory op-
erations [1]. Contrarily, the BlueFS system [19] increasesperfor-
mance for applications with latency-bound operations by perform-
ing speculative execution in the client kernel, reducing latency for
predictable functions.

Augmenting established standards is another route to improving
performance for the applications studied here. Extending the com-
monly implemented POSIX operating system interface for high-
end computing systems has been proposed [13] to improve per-
formance for a wide range of highly concurrent applications. For
example, thereaddirplus() extension has been implemented
in the Chirp and PVFS systems, and its use could benefit applica-
tions that perform large numbers of directory queries. Additionally,
NFSv4 [25] extends NFS in ways that could improve the scalability
of metadata-intensive applications, including the use of compound
operations.

The application script itself may contain information thatcan be
tapped to improve the application-visible performance of the I/O
system. Job submission scripts may be annotated with directions to
the storage system regarding intended file accesses [17]. MapRe-
duce [8] and All-Pairs [18] are programming models that provide
complete information about the application data access pattern.

3. CASE STUDIES

3.1 Applications

3.1.1 OOPS
OOPS [9] is a protein folding software package based around

the Protein Library, a protein structure toolkit. Using a model that
reduces interactions through a coarse-grained statistical potential,
OOPS-based simulated annealing produces reliable structures with
minimal side-chain and nearest neighbor complexities. OurOOPS
script evaluates many potential protein structures in parallel, then

performs postprocessing and visualization on the resulting output.
This process repeats until an acceptable structure has beendetected,
signaling convergence.

3.1.2 DOCK
DOCK [15] is a molecular program that quickly analyzes the

docking potential of large numbers of molecules against a set of
target sites. The model employed by this software places each
molecule in the binding site at the target and evaluates the con-
formational space at that interaction. Our DOCK script pairs large
numbers of target sites against a database of ligand molecules, se-
lecting those that fit.

3.1.3 BLAST
BLAST [2] is a DNA and amino acid search tool to detect align-

ments of two sequences that are minimal in variation. BLAST uses
a heuristic method to assign mutation scores to sequence pairs to
quickly obtain probable sequence similarities. Our BLAST script
performs large numbers of sequence analysis computations in par-
allel and reduces the results into output indicating the matches.

3.1.4 PTMap
PTMap [6] is a software package designed to match mass spec-

troscopy data against a database of protein sites. To avoid the gen-
eration of large numbers of false positives, PTMap uses several al-
gorithmic enhancements that reduce false positives, extracting rel-
evant signal peaks from noise. Our script scores PTMap results for
pairs of spectroscopy data sets against proteins in parallel, followed
by analysis and summarization.

3.1.5 fMRI
The fMRI application [14] considered here analyzes brain re-

gions for response to experimental stimuli. A relational database of
responses for a given subject may be queried for analysis, provid-
ing statistical connections to be made between MRI data and brain
function. Our fMRI script pulls records from the MRI database,
performing statistical tests on each brain region using thestatistical
analysis language R and writes the result.

3.2 System Architecture
As diagrammed in Figure 1, our target petascale system archi-

tecture consists of several components of interest to small-task I/O.
The infrastructure consists of three major hardware sections: the
file servers (FS), the intermediate servers (IS), and the applica-
tion compute nodes (APP). Compute nodes are assumed to be con-
nected by a high-performance (possibly specialized) interconnect,
ideal for low-latency, high-bandwidth messages required by typi-
cal high-performance computing applications. Compute nodes are
connected to intermediate services, which are connected toeach
other and to file services via a commodity network. File servers are
assumed to be participating in a large-scale deployment of aparallel
file system. Intermediate nodes cache and aggregate I/O operations
to reduce the impact of small, latency-bound file operationson the
file system.

3.3 Application Profiles
Table 1 profiles the five applications covered in this report by

diagramming the essential operations performed by the workflow
model, as well as quantifies essential usage statistics. Additionally,
certain easily optimized data (file) movement operations may be
characterized by one of the following patterns:

B© Broadcast: The same data set is obtained by multiple re-
ceivers.



Figure 1: Coarse schematic of a petascale architecture.

S© Scatter: A collection of data sets is split up and sent to mul-
tiple receivers.

G© Gather: A distributed data set is aggregated by a single re-
ceiver. A typical use case of a gather operation is a data re-
duction or selection, which could involve performing an op-
eration on a set of results, aggregating results into a compact
data set, or culling unnecessary results.

These operations may be optimized through special uses of the net-
work such as multicast, or by using tree-based algorithms.

Data objects are represented by cylinders. Non-persistentdata
objects are represented by dashed cylinders; these data sets are not
required by the user in the final output.

These two notations indicate the potential for optimization by
transforming the portable file system calls used by the application
into message-oriented operations. For example, if multiple applica-
tion invocations read the same data set, the load on the file system
can be reduced by performing a single read and employing an ef-
ficient broadcast. Similarly, data written by a process and re-read
by a successive, dependent process may avoid using the filesystem
altogether by forwarding the data set directly from the writer to the
reader.

The column in Table 1 labeledStatistics indicates thetotal I/O
as performed by the tasks. I/O Reduction indicates the theoretical
fraction of I/O that may be eliminated through the application of
CDM strategies:

reduction = 100% −
I/O seen by FS

I/O seen by APP
.

Additionally, some application characteristics are denoted for dis-
cussion below.

3.4 Application Scale
Each script consists of a variable number of sequential tasks,

symbolized byN and M . An invocation of each application is
capable of consuming much or all of the parallelism on a near-
petascale machine, i.e., 50,000 concurrent tasks or more; individual
task run times are short (5-10 minutes).

OOPS: PTMap:
N ≈ 5 − 10 N ≈ 50
M ≈ 10, 000 M ≈ 1000

DOCK: fMRI:
N ≤ 1, 000, 000 N ≈ 100, 000
M ≈ 20

BLAST:
N ≈ 1, 000, 000

4. ANALYSIS

4.1 Reducing I/O and Application Patterns
The results from Table 1 indicate that a great deal of the I/O

workload may be reduced by applying the CDM strategies. In the
first four cases, the I/O seen by the FS may be reduced by more
than 99%. The actual result requested by the user is often relatively
small; the total I/O is primarily used to pass intermediate results
from one component task to another. In an MPI application, this
would not be described as I/O at all; however, when scripting, the
application writer does not specify the nature of the I/O operation.
Tools to automate the application of CDM strategies must be de-
veloped to maintain the ease of scripting while ensuring efficiency.

Each application gains an I/O reduction through caching. Anex-
ample is shown in the OOPS diagram, where a 10 MB file is written
and then reread at the next iteration. This data should be cached to
prevent accessing the FS; however, large runs could exceed the size
of the IS; and if the IS is used as an LRU cache, additional FS ac-
cesses could be necessary. Thus, in order to ensure the locality of
the intermediate data sets, a data-aware scheduler must be used.

Two applications, BLAST and fMRI, show the MapReduce pat-
tern of data distribution, computation, and output reduction. No-
tably, a straight forward MapReduce port would still not be ef-
ficient if it did not recognize the large broadcast in the BLAST
case. (The MapReduce pattern in BLAST workflows was previ-
ously noted [16].) The DOCK and PTMap applications use the
All-Pairs [18] pattern.

4.2 Parallelism and Contention
As is typical in scripted workflows, all application data opera-

tions read or write whole files. This approach eliminates theneed
for the FS to manage write consistency under contention within
a file or manage shared file pointers. Contention for modifying a
directory, however, is a constraint. Additionally, none ofthe com-
ponent application tasks are parallel applications, so they cannot
benefit from MPI-IO [29] optimizations. As noted in the introduc-
tion, modifying a directory introduces write contention inthe FS.
Currently, the cost is reduced by manually distributing filecreation
across multiple directories. The PTMap application generates an
index of Unix links to structure the selected data sets, a process
made tolerable by limiting the concurrency of directory accesses.

4.3 Post-petascale Developments
The road ahead for post-petascale parallel scripting applications

faces I/O challenges. We assume near-term machines in the 20-100
petaflop/s range will contain 1-2 million processor cores. The run
time of individual tasks is not expected to change substantially as
MIPS rate gains are expected to be modest. Additionally, memory
per node is not expected to increase. This situation has two impli-
cations for CDM strategies. First, the number of files will increase
with N andM as used in Table 1, increasing the importance of
efficient filesystem metadata processing. Second, caching will be-
come more complex as the number of cores may grow faster than
size of the IS cache space, necessitating data-aware scheduling.

5. SUMMARY
In this report we have provided a coarse-grained description of

the data access workloads produced by five scripted scientific ap-
plications. We have identified common I/O patterns that may be
captured and exploited to improve the performance of the I/Osys-
tem as well as to reduce the responsibilities of the script writer. We
intend that the contribution of this work will enhance the usability
and efficiency of petascale computers.



Application Diagram Statistics I/O Reduction

OOPS

read: 5.7TB input: 99%
write: 1TB output: 99%

iteration (§ 4.1)
overwrites(§ 4.2)

DOCK

read: 3.2PB input: 99%
write: 2PB output: 99%

all-pairs (§ 4.1)

BLAST

read: 3.5PB input: 99%
write: 150GB output: 99%

map-reduce(§ 4.1)

PTMap

read: 1.1TB input: 99%
write: 6GB output: 99%

directory ops(§ 4.2)
all-pairs (§ 4.1)

fMRI

read: 18MB input: 66%
write: 1GB output: 17%

map-reduce(§ 4.1)

Table 1: Application profiles.
All file sizes represent one of many possible use cases and areapproximations.

Task dependencies are denoted with arrows; execution generally flows from left to right.
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